PECVD制备掺氮类金刚石薄膜的电化学特性*

周 凯^{1,2} 柯培玲² 汪爱英² 邹友生¹

 1. 南京理工大学材料科学与工程学院 南京 210094
2. 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 中国科学院宁波材料技术与工程研究所 宁波 315201

摘要利用混合离子束系统,通过辉光放电等离子体增强化学气相沉积(PECVD)方法制备出类金刚石薄膜(DLC)和掺氮类 金刚石薄膜(N-DLC),用可见拉曼光谱、X射线光电子能谱和扫描探针显微镜表征薄膜微观结构和表面形貌,采用电化学工 作站测量了薄膜的电化学性能。结果表明,DLC薄膜的表面光滑致密、粗糙度低,掺氮增加了薄膜中的sp²团簇相并形成了 C-N键,并使C-O键含量和薄膜表面的活性位点增加。N-DLC薄膜电极在硫酸溶液中的电化学势窗达4.5 V和较低的背景 电流(0.3±0.2 μA/cm²);在铁氰化钾溶液中电极的电流响应明显,表现为受扩散控制的准可逆过程。电极具有很好的重复性 和稳定性。

关键词 无机非金属材料, PECVD, N-DLC, 微观结构, 电化学性能分类号 O646, O657 文章编号 1005-3093(2014)03-0161-05

Electrochemical Properties of Nitrogen-doped DLC Films Deposited by PECVD Technique

ZHOU Kai^{1,2} KE Peiling² WANG Aiying^{2**} ZOU Yousheng¹

School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094
Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials

and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of

Sciences, Ningbo, 315201

*Supported by National Basic Research Program of China No. 2012CB933003, National Natural Science Foundation of China No. 51371187, Ningbo Science and Technology Innovation Team No. 2011B81001, and Fundamental Research Funds for the Central Universities No. 30920130111019.

Manuscript received October 23, 2013; in revised from December 11, 2013.

**To whom correspondence should be addressed, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn

Abstract Diamond-like carbon (DLC) and Nitrogen-doped diamond-like carbon (N-DLC) films were synthesized by glow discharge plasma enhanced chemical vapor deposition (PECVD) using a hybrid ion beam system. The microstructure and surface topography of films were characterized by Raman spectroscopy, X-ray photoemission spectroscopy and scanning probe microscopy. The electrochemical performance of the films was examined by an electrochemical workstation. Results indicate that the surface of all the deposited films is very smooth with low roughness. Nitrogen doping enhances the clustering of sp² sites and results in the formation of C-N bond, meanwhile, increases the amount of C-O bond and the surface active sites of films. N-DLC film electrode shows a wide potential window range over 4.5 V, lower background current ($0.3\pm0.2 \ \mu$ A/cm²) in H₂SO₄ solution. N-DLC film electrode with good repeatability and stability displays significantly current response and nearly reversible electrode reaction in K₃Fe (CN)₆ solution. Furthermore, the electrode reaction is controlled by diffusion process.

KEYWORDS inorganic non-metallic materials, PECVD, N-DLC, microstructure, electrochemical properties

 $-\oplus$

* 国家重大基础研究计划 2012CB933003, 国家自然科学基金 51371187, 宁波市创新团队 2011B81001 和中央高校基本科研业 务费专项资金 30920130111019资助项目。

2013年10月23日收到初稿; 2013年12月11日收到修改稿。 本文联系人: 汪爱英, 研究员 汞、贵金属以及碳素(如石墨、玻碳、热解碳等) 等传统电极在电分析和电化学传感等领域有广泛的 应用,但都有一定的不足。例如,汞电极有毒且不能 在正电位使用^[1, 2];金和铂电极容易被检测液污染, 生物相容性差, 难以实现体内在线检测; 传统的碳素 电极耐腐蚀性差、电极重复性差, 其有限的电化学势 窗限制了其检测范围。硼掺杂金刚石薄膜(BDD)电 极具有宽电化学势窗、低背景电流和高稳定性等优 异的电化学性质和极端的物理特性^[3-5], 但是其成膜 温度较高(高于800℃), 表面粗糙多孔, 表面处理和 再造困难以及难以制备大面积厚度均匀薄膜^[6]。

类金刚石薄膜(DLC)具有与金刚石薄膜类似的 优良特性(如高的硬度、耐磨性、化学稳定性、抗腐蚀 能力和生物相容性)^[7,8],且可在室温下实现大面积均 匀沉积。但是未掺杂的DLC薄膜电阻率高,影响电 极的电流响应。元素掺杂可降低DLC薄膜的电阻 率,氮原子掺入不仅可以降低DLC薄膜内应力^[9], 还使其电导率提高^[10,11]。掺氮类金刚石(N-DLC)薄 膜具有宽电势窗口、低背景电流、低双层电容^[11-14]、 良好的电化学活性。本文用辉光放电等离子体增强 化学气相沉积(PECVD)制备N-DLC薄膜,研究氮原 子掺入及其结构对薄膜电化学性能的影响。

1 实验方法

使用 P600 型混合离子束沉积系统,通过辉光放 电等离子增强化学气相沉积方法在 n 型硅基片(电 阻率为0.001~0.005 (Ω·cm)上制备掺氮类金刚石薄 膜。将基片在丙酮溶液中超声清洗15min后放入真 空腔,待真空腔的真空度达到6.67×10⁻³ Pa时打开离 子源和偏压,控制离子源电流为0.2 A,基片偏压-100 V,氩气流量40 sccm,对基片刻蚀6min。沉积掺 氮类金刚石薄膜时,向真空腔中通入20 sccm的乙炔 和 80 sccm的氮气,保持工作气压 9.331 Pa、基底偏 压-550 V。薄膜的厚度控制在100 nm左右。

用表面轮廓仪(Alpha-step IQ, US)测量薄膜的 厚度,用激发波长为532 nm的He-Ne激光拉曼光 谱仪(Renishaw inVia-reflex)测量N-DLC薄膜的化 学键结构,用XPS(Axis ultraDLD)分析掺氮类金刚 石薄膜的组成和化学键,用扫面探针显微镜 (SPM, Dimension 3100)表征掺氮类金刚石薄膜的 表面形貌。

电化学测量在 Solartron 1400 多通道电化学测 试系统上进行,掺氮类金刚石薄膜作为工作电极,饱 和甘汞电极作为参比电极,铂片作为对电极。将掺 氮类金刚石薄膜的四周和背面用环氧树脂包裹,露 出的薄膜表面为电极的真实面积。用循环伏安法测 量薄膜电极材料在 0.5 M H₂SO₄ 电解质溶液中的电 化学势窗口,扫描速率为 0.05 V s⁻¹;以 10 mM K₃Fe (CN)₆为探针分子测量薄膜电极的电化学性能,扫描 速率为0.02~0.2 V s⁻¹。

2 结果与讨论

2.1 薄膜的结构和表面形貌

DLC和N-DLC薄膜的可见拉曼光谱(图1)均具 有两个明显的特征峰,其中在1000-1800 cm⁻¹的峰为 碳的一阶峰,在2400-3400 cm⁻¹的峰为碳的二阶峰。 将碳的一阶峰进行高斯拟合,得到~1350 cm⁻¹的D峰 和~1540 cm⁻¹的G峰,其中D峰源自无序环状 sp²碳 的呼吸振动,G峰则是环状和短链状 sp²碳的伸缩振 动造成的^{115]},G峰和D峰的峰位、半高宽和ID/IG都 能反应薄膜结构变化^{116,17]}。结果表明,氮的掺入并 没有改变薄膜的非晶结构,但G峰峰位从1532.5 cm⁻¹ 向高波数移动到1544.3 cm⁻¹,半高宽减小;同时D峰 峰位向高波数移动了24 cm⁻¹,半高宽增加;D峰和G 峰强度比(ID/IG)从0.75增加到1.37。氮的掺入增加 了薄膜 sp²团簇相的含量,增加了薄膜石墨化程度。

为了进一步分析 N-DLC 薄膜的化学组成和化 学键结构,对薄膜进行了 XPS 测试。图2为DLC和 N-DLC 薄膜的 XPS 全谱图,可见 N-DLC 薄膜在 399.35 eV 出现一个新峰,对应于 N1s,表明 N-DLC 薄膜中氮原子的存在,峰位位于 284.9 和 532.35 eV 分别为 C1s 和 O1s 峰。Ar⁺对 N-DLC 薄膜刻蚀后氧 的峰消失,说明氧元素是由于薄膜暴露于空气中吸 附氧所致。进一步的计算结果表明, N-DLC 薄膜中 的氮原子含量为 7.37%。通过对 DLC 和 N-DLC 薄 膜的 XPS C1s 峰进行 Voigt 拟合,得到 C 原子的具 体键结构组成,如图 3 所示。284.6±0.1 eV、285.6± 0.2 eV 和 286.0±0.1 eV 分别对应于 sp²C-C、sp³C-C 和 C-O键, N-DLC 薄膜的 C1s 拟合谱还有一个 287.8± 0.1 eV 的峰,对应于 C-N键^[18]。分峰拟合结果表明, 在 DLC 薄膜中掺入氮原子改变了碳原子局部键结

图1 DLC和N-DLC薄膜的拉曼光谱 Fig.1 Raman spectra of DLC and N-DLC film

 $- \oplus$

合,导致薄膜中sp²C-C键含量减少,sp³C-C键含量增加,形成新的C-N键,C-N键的含量为4.58%,其含量低于薄膜中氮原子含量。对N1s峰的拟合结果表明,部分氮原子形成N-O键;同时使C-O键含量从4.89%增加到8.57%,说明氮的掺入使得薄膜表面活

- **图3** DLC和N-DLC薄膜的XPS C1s峰的拟合谱: 1、2、 3、4分别代表 sp²C-C、sp³C-C、C-O、C-N键
- **Fig.3** Deconvolved spectra of XPS C1s core lever peaks of DLC and N-DLC film: Peaks of 1, 2, 3 and 4 corresponding to sp²C-C, sp³C-C, C-O and C-N bonds, respectively

性增加,更多的吸附氧和表面的碳成键。

图4为DLC和N-DLC薄膜的AFM形貌图,可 见通过辉光放电等离子增强化学气相沉积方法制备 的薄膜表面光滑、致密,无针孔,薄膜的粗糙度均在 0.27 nm左右。氮原子的掺入对薄膜的表面形貌几 乎没有影响。

2.2 薄膜的电化学特性

表征电极电化学性能最重要的参数之一是电势 窗口,其定义是在溶液中出现的氧化还原电流小于 0.2 mA·cm⁻²的电势区域。电极的电势窗口越宽,可 用于检测分析的物质种类越多。图5给出了DLC和 N-DLC薄膜电极在0.5 MH₂SO₄溶液中的循环伏安 曲线。从图5可以看出, DLC薄膜电极在酸溶液中 没有出现明显的电化学响应,对水没有催化活性;而 N-DLC薄膜电极出现明显的氧化还原峰,具有宽的 电势窗口(约4.5 V),比掺磷类金刚石薄膜和掺硼金 刚石薄膜(BDD)电极的电势窗口更宽^[19,20]。电极电 化学势窗越宽,能被检测的有机物及重金属离子的 种类越多。电极的电化学测试,依靠电极表面微弱 物质吸附产生的化学反应。由 XPS 结果可知, N的 掺入提高了薄膜的表面活性,同时生成新的C-N活 性键,从而使薄膜电极的电化学电流响应增加。此 外, N-DLC薄膜电极还具有低的背景电流, 在很大 的电势范围内为0.3±0.2 µA/cm², 表现出更高的信噪 比,提高了电极的检测灵敏性。

电极的另一重要特性是可逆性, 一般选择铁氰 化钾为氧化还原的可逆体系 $Fe(CN)_6^{3-e} \leftrightarrow Fe(CN)_6^{4-}$ 。 对于单电子理想可逆氧化还原反应, 氧化峰和还原 峰的电势差 ΔE_p 的理论值为 58 mV, 氧化峰和还原峰 电流比 I_p^{ax}/I_p^{red} 的理论值为 1。实验测定的值越接近 理论值, 说明体系的可逆性越好。图 6a 给出了不同 扫描速率下 N-DLC 薄膜电极在 0.01 M K₃Fe(CN)₆和 1 M KCl 混合溶液中的循环伏安曲线。在扫描速率

为 0.2 V s⁻¹ 时 ΔE_p 和 I_p^{ex} / I_p^{red} 分别为 84 mV 和 1.248, 电极表现为准可逆行为。随着扫描速率的增加峰值

图5 DLC和N-DLC薄膜电极在 0.5 M H₂SO₄溶液中的 循环伏安曲线(扫描速率 0.05 V s⁻¹)

Fig.5 Cyclic voltammograms of DLC and N-DLC film electrode in 0.5 M $\rm H_2SO_4$ solution with a scan rate of 50 mV $\rm s^{-1}$

- 图6 不同扫描速率下N-DLC薄膜电极在0.01 MK₃Fe (CN)₆和1 MKCl混合溶液中的循环伏安曲线,以及N-DLC薄膜电极阴极和阳极峰值电流密度和 扫描速率平方根的关系
- Fig.6 Cyclic voltammograms of N-DLC film electrode in 0.01 M K₃Fe(CN)₆ + 1 M KCl solution at various scanning rates (a) and Dependence of peak current densities of anodic and cathodic reactions on square root of scan rate of N-DLC film electrode (b)

电流明显增加, 而ΔE_p增幅较小。图 6b 给出了氧化 峰和还原峰峰值电流和扫描速率平方根之间的关系 曲线, 可见两者之间呈线性关系, 表明 Fe(CN)₆^{3,4}在 N-DLC 薄膜电极上的电化学反应动力学受扩散过 程控制。在扫描速率为 0.5 V s⁻¹对电极连续循环 9 次, 扫描曲线几乎重合在一起, 表明电极表面对反应 中间体的吸附较弱, 电极表面几乎不随时间发生变 化, 具有很好的重复性和稳定性。

3结 论

用辉光放电PECVD可制备薄膜表面光滑致密、 粗糙度低的DLC薄膜和N-DLC薄膜。氮原子掺入 后薄膜仍保持非晶结构,使薄膜中 sp²团簇相和C-O 键的含量增加,薄膜的表面活性提高,形成了新的 C-N活性键。N-DLC薄膜电极在硫酸溶液中的电化 学势窗达4.5 V,表现出低的背景电流,具有高的信 噪比。在铁氰化钾溶液中电极电流响应明显, Δ*E*_p和 I_p^{ax}/I_p^{red} 分别为84 mV和1.248,表现为准可逆过程, 电极反应动力学受扩散过程控制,且具有很高的重 复性和稳定性。

参考文献

- C. Agra-Gutierrez, J.L. Hardcastle, J.C. Ball, R.G. Comptom, Anodic stripping voltammetry of copper at insonated glassy carbonbased electrodes: application to the determination of copper in beer, Analyst, **124**(7), 1053(1999)
- 2 E. Gustafsson, Swedish experiences of the ban on products containing mercury, Water Air Soil Pollut, **80**, 99(1995)
- 3 S. Fierro, N. Mitani, C. Comninellis, Y. Einaqa, PH sensing using boron doped diamond electrodes, Physical Chemistry Chemistry Physical, 13(37), 16795(2011)
- 4 J. Achard, F. Silva, R. Issaoui, O. Brinza, A. Tallaire, H. Schneider, K. Isoird, H. Ding, S. Koné, M. A. Pinault, F. Jomard, A. Gicquel, Thick boron doped diamond single crystals for high power electronics, Diamond and Related Materials, **20**(2), 145(2011)
- 5 D. Meziane, A. Barras, A. Kromka, J. Houdkova, R. Boukherroub, S. Szunerits, Thiolyne reaction on boron- doped diamond electrodes: application for the electrochemical detection of DNA – DNA hybridization events, Analytical Chemistry, 84(1), 194 (2012)
- 6 K. S. Yoo, B. Miller, R. Kalish, X. Shi, Electrodes of nitrogen-Incorporated tetrahedral amorphous carbon-a novel thin-film electrocatalytic material with diamond-like stability, Electrochemical and Solid-State Letters, 2(5), 233(1999)
- 7 J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R, **37**(4-6), 129(2002)
- 8 A. Zeng, E. Liu, I. F. Annergren, S. N Tan, S. Zhang, P. Hing, J, Gao, EIS capacitance diagnosis of nanoporosity effect on the corrosion protection of DLC films, Diamond and Related Materials, **11** (2), 160(2002)
- 9 B. Wei, B. Zhang, K. E. Johnson, Nitrogen-induced modifications in microstructure and wear durability of ultrathin amorphous-car-

bon films, Journal of Applied Physics, 83(5), 2491(1998)

- 10 A. Zeng, E. Liu, S. N. Tan, S. Zhang, J. Gao, Cyclic voltammetry studies of sputtered nitrogen doped diamond-like carbon film electrodes, Electroanalysis, 14(15-16), 1110(2002)
- 11 Y. Tanaka, M. Furuta, K. Kuriyama, R. Kuwabara, Y. Katsuki, T. Kondo, A. Fujishima, K. Honda, Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods, Electrochimica Acta, 56(3), 1172 (2011)
- 12 A. Zeng, M.M.M. Bilek, D.R. McKenzie, P.A. Lay, Semiconductor properties and redox responses at a-C:N thin film electrochemical electrodes, Diamond and Related Materials, 18(10), 1211(2009)
- 13 A. Lagrini, C. Deslouis, H. Cachet, M. Benlahsen, S. Charvet, Elaboration and electrochemical characterization of nitrogenated amorphous carbon films, Electrochemistry Communications, 6(3), 245 (2004)
- 14 P. Tamiasso-Martinhon, H. Cachet, C, Debiemme-Chouvy, C. Deslouis, Thin films of amorphous nitrogenated carbon a-CNx: electron transfer and surface reactivity, Electrochimica Acta, 53(19), 5752(2008)
- 15 A. C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W. I. Milne, V. Stolojan, L. M. Brown, A. LiBassi, B. K. Tanner, Deter-

mination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman Scattering and X-ray Reflectivity, Journal of Non-Crystalline Solids, **266**, 765(2000)

- 16 K. W. R. Gilkes, H. S. Sands, D. N. Batchelder, J. Robertson, W. I. Milne, Direct observation of sp(3) bonding in tetrahedral amorphous carbon using ultraviolet raman spectroscopy, Applied Physics Letters, **70**(15), 1980(1997)
- 17 G. Irmer, A. Dorner-Reisel. Micro-raman studies on DLC coatings, Advanced Engineering Materials, 7(8), 694(2005)
- 18 G. M. Fuge, C. J. Rennick, S. R. J. Pearce, P. W. May, M. N. R. Ashfold, Structural characterisation of CNx thin films deposited by pulsed laser ablation, Diamond and Related Materials, **12**(3-7), 1049(2003)
- 19 A. P. Liu, J. Q. Zhu, J. C. Han, H. P. Wu, G. Wei, Influence of phosphorus doping level and acid pretreatment on the voltammetric behavior of phosphorus incorporated tetrahedral amorphous carbon film electrodes, Electroanalysis, **19**(17), 1773(2007)
- 20 G. R. Salazar-Banda, L. S. Andrade, P. A. P. Nascente, P. A.P. Nascente, P. S. Pizani, R. C. Rocha-Filho, L. A. Avaca, On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments, Electrochimica Acta, 51 (22), 4612(2006)