Cu掺杂非晶碳薄膜的电学性能及其 载流子输运行为

闫春良1.2 郭 鹏2 周靖远2 汪爱英2.3

1上海大学材料科学与工程学院 上海 200444

2 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与 防护技术重点实验室 宁波 315201

3 中国科学院大学 材料与光电研究中心 北京 100049

摘要以Cu-C拼接靶为靶材,用高功率脉冲磁控溅射制备出4种Cu含量(原子分数)低于10%的Cu掺杂非晶 碳(a-C: Cu)薄膜,研究了Cu含量对a-C:Cu薄膜组分结构、电学性能以及载流子输运行为的影响。结果表明: 随着非晶碳中Cu含量的提高,a-C:Cu薄膜中sp²-C的含量提高、团簇尺寸增大、薄膜电阻率、透过率和光学带隙 均减小,费米能级向价带偏移。Cu含量为2.77%和3.88%的样品在150~250K的载流子输运机制为Mott型三 维变程跳跃传导,在250~350K则为热激活传导;而Cu含量(原子分数)为5.4%和7.28%的样品在150~350K均 为Mott型三维变程跳跃传导。掺入Cu,可控制非晶碳薄膜的光学和电学性能。

关键词 材料表面与界面,电学性能,高功率脉冲磁控溅射,Cu掺杂非晶碳,能带结构 中图分类号 O484

文章编号 1005-3093(2023)10-0747-12

Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films

YAN Chunliang^{1,2}, GUO Peng², ZHOU Jingyuan², WANG Aiying^{2,3}

1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Correspondent: WANG Aiying, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn

Supported by National Nature Science Foundation of China (No. U20A20296), Science and Technology 2025 Innovation Project of Ningbo (No. 2020Z023), K C Wong Education Foundation Lu Jiaxi International Team Project (No. GJTD-2019-13), Natural Science Foundation of Zhejiang Province (No. LQ20E-020004)

Manuscript received 2022-12-16, in revised form 2023-02-21

ABSTRACT The work aims to study the effect of doped Cu content on the structure, electrical properties and carrier transport behavior of amorphous carbon (a-C) films. The Cu doped a-C (a-C:Cu) films were deposited by a homemade High Power Impulse Magnetron Sputtering set with the Cu-C composite

资助项目 国家自然科学基金(U20A20296),宁波市科技创新2025重大专项(2020Z023),王宽诚率先人才计划卢嘉锡国际团队 (GJTD-2019-13),浙江省自然科学基金(LQ20E020004)

收稿日期 2022-12-16 定稿日期 2023-02-21

作者简介 闫春良,男,1997年生,硕士

通讯作者 汪爱英,研究员,aywang@nimte.ac.cn,研究方向为表面强化涂层材料与功能改性

DOI 10.11901/1005.3093.2022.667

target as sputtering source. A series of a-C: Cu films with Cu content less than 10% (atomic fraction) were deposited by adjusting the position of substrates. The results demonstrated that increasing the doped Cu content led to the enhancement of the content and cluster size of sp²-C in films. Particularly, as the Cu content increased from 2.77% to 7.28%, the sp²-C content increased from 48% to 54%. Accordingly, this decreased the bandgap width from 3.87 eV to 2.93 eV, which corresponds to the reduction of electrical resistivity and transmittance in a-C: Cu films. For a-C: Cu films with Cu content in the range of 2.77%~7.28%, the voltage was positively linear correlated with the excitation in the I-V test, suggesting the dominated ohmic behavior. The resistance of all the a-C:Cu films decreased monotonically with the increase of temperature, demonstrating the typical semiconductor behavior. Specifically, when the Cu content varied in the range of 2.77%~3.88%, the electrical transport of a-C: Cu films was ascribed to the three-dimensional Mott-type variable range hopping conduction in lower temperature from 150 K to 250 K and the thermal activation transport within higher temperature range of 250~350 K, respectively. However, for a-C: Cu films with Cu content of 5.4%~7.28%, only Mott-type variable range hopping conduction played the key role for the carrier transport in temperature of 150~350 K. The results showed that the optical and electrical properties of amorphous carbon films could be significantly controlled by doping Cu, which brought forward the promising potential to develop the carbon-based photoelectric devices with high-performance.

KEYWORDS foundational discipline in materials science, electrical properties, high power impulse magnetron sputtering, Cu doped amorphous carbon, band structure

非晶碳薄膜(Amorphous carbon, a-C)主要由sp³ 杂化结构(金刚石)和sp²杂化结构(石墨)的C组成, 具有高硬度、耐磨损和耐腐蚀等特性^[1-3]。a-C薄膜 是一种非晶半导体材料,在可见光到红外光区均 具有优异的透光性,调控sp²-C/sp³-C的比例即可将 其光学带隙从导电石墨0eV改变到绝缘金刚石 5.5 eV^[4]。因此,作为一种多功能光电器件材料,a-C 薄膜备受关注^[5,6]。但是,这种材料本征非晶碳较 高的内应力,使膜基结合力差且热稳定性较低。 为此,可在非晶碳中掺入金属以调控其电学性能。 改变掺入金属的种类,还可使非晶碳具有不同的 光电特性^[67]。

李晓伟等^[8]计算了掺杂不同种类和含量的金属 时非晶碳的电子结构,发现掺入过渡金属可降低这 个体系的总畸变能量从而降低残余应力,掺杂Cu, 可使其具有Cu-C反键态特征。Yaremchuk等^[9]用磁 控溅射技术沉积了不同Cu含量的a-C:H:Cu薄膜, 发现掺杂Cu的非晶碳具有等离子体共振效应,共 振吸收峰的位置向短波方向移动。Beauty等^[10]用 电化学沉积制备了不同Ni含量的非晶碳薄膜,随 着Ni含量的降低,这种薄膜的光学带隙逐渐下降。 Meskinis等^[11]用反应磁控溅射制备Ni掺杂非晶碳 新型敏感材料,研究了Ni掺杂对其电学和压阻性 能的影响。结果表明,改变掺入Ni的含量可大范 围调控非晶碳的电阻率,Ni含量低于4%(原子分 数)的样品,其压阻系数大于3000,远比纯非晶碳和 常用Si材料的高。

与晶体半导体不同,非晶半导体中既有扩展态 又有定域态,而定域态电子只能通过隧穿或者热激 活方式传导^[12]。非晶碳中的碳原子主要以 sp²和 sp³ 杂化的形式存在, sp^2 杂化碳既有 σ 键又有 π 键。位 于费米能级附近的 π 电子决定非晶碳的电学特 性113,而π键又与原子间距和配位数密切相关。非 晶碳复杂的键态结构,使其载流子输运机理的研究 进展缓慢。Tripathi等^[14]指出,纯非晶碳的载流子输 运方式为Mott型变程跳跃传导。Abdolghaderi等^[15] 调控非晶碳中Ag的掺入量使载流子输运方式变为 渗流特性。万蔡华等¹¹⁰发现,在非晶碳中掺入Fe使 载流子的输运方式从低温到高温依次从Efros-Shklovskii(ES)型变为跳跃传导(<60 K)、Mott型三维变 程跳跃传导(60~200 K)或热激活传导(>200 K)。掺 杂多种金属与碳成键的特征差异较大[17,18],金属能以 固溶或以金属和碳化物纳米晶的形式存在于非晶碳 基质中四。同时,随着金属含量的变化非晶碳的结 构和载流子输运行为极为复杂。载流子的输运机理 不明确,限制了碳基薄膜光电器件的设计和应用。

在非晶碳中掺入Cu使C2p轨道与Cu3d轨道 杂化,电子占据能量较高的反键态,即Cu和C成反 键特征^[8]。这表明,a-C:Cu体系的电子结构不稳定, 在非晶碳中掺杂Cu可使薄膜具有优异的光电特性。 但是,掺杂过量的金属会降低非晶碳优异的机械性 能和半导体特性。

与直流磁控溅射技术相比,高功率脉冲磁控溅射技术(HiPIMS)具有更高的离化率,可在较宽的范

围调控离子能量,有利于调节薄膜的 sp²-C/sp³-C比 例和 Cu含量从而制备出高致密涂层^[19]。鉴于此,本 文采用 HiPIMS 技术制备 Cu含量(原子分数)为 2.77%~7.28%的 a-C: Cu薄膜,系统研究 Cu含量对 a-C: Cu薄膜组分结构的影响并分析薄膜的电学性 能和载流子输运机理。

1 实验方法

1.1 样品的制备

用高功率脉冲磁控溅射制备不同Cu掺杂含量 非晶碳薄膜,其设备(图1)包括一个离子束源和一 个磁控溅射源。磁控溅射用的靶材为Cu(99.99%, 20 mm×100 mm)与石墨(99.99%, 380 mm×100 mm) 拼接靶,使用HiPIMS电源,工作气体为Ar气。衬底 为二氧化硅、石英玻璃以及单面抛光单晶硅片。将 用无水乙醇清洗干净的衬底固定在四面体机架,然 后置于真空沉积腔室中。如图1所示,将距离机架 底部4、8、12、16 cm的样品分别命名为S1、S2、S3、 S4。待腔室真空度达到 2.7×10⁻³ Pa 后向腔室通入 40 mL/min的Ar气,离子束工作电压设定为1200 V, 对衬底进行刻蚀清洗20 min。调节Ar气流量使腔 室的气压达1.3×10⁻² Pa。用HiPIMS 电源沉积Cu掺 杂非晶碳薄膜,溅射功率为500W,频率为455Hz, 脉宽为200 µs。在机架上施加-200 V的偏压,并使 其以120 Hz的频率自传。为了调控Cu含量,调整 样品在机架上的位置以改变Cu靶与样品的靶基距。 由于Cu的溅射产额大于C,因此越靠近Cu靶位置薄 膜样品沉积速率越高。为了排除薄膜厚度对样品性 能的影响,S1、S2、S3号样品的沉积时间为120 min, S4号样品的沉积时间为95 min,以使所有薄膜的厚 度为205±20 nm。

1.2 结构和性能表征

用热场发射扫描电子显微镜(SEM, Verios G4 UC)观察薄膜截面的形貌并测量其厚度。使用原子 力显微镜(AFM)轻敲模式表征薄膜表面的形貌和粗 糙度。使用X射线光电子能谱仪(XPS, Axis Ultra DLD)表征 a-C: Cu 薄膜的元素含量和化学键。测试 前用4 kV的Ar⁺蚀刻样品4 min 以去除表面污染物。 用高斯和洛伦兹函数对C1s峰进行分峰拟合,并计 算 sp²-C/sp³-C比例。用拉曼光谱(LAbRAMHR Evolution, 532 nm)分析 a-C: Cu 薄膜中碳原子键合结构。 用X射线衍射仪(XRD, D8 ADVANCE DAVINCI)表 征薄膜的相结构。用透射电子显微镜(TEM, Tecnai F20)表征薄膜的微观结构,根据电子能量损失谱 (EELS)分析碳键结构。用紫外光电子能谱(UPS, Axis Ultra DLD)测量薄膜价带谱和二次电子截止边 谱,其光源为能量21.22 eV的HeI共振线。使用综 合物理性能测试系统(PPMS, PPMS-EverCool)测量 a-C: Cu薄膜在150~350 K的I-V特性和电阻率。使 用紫外可见近红外分光光度计(Lambda 950)测量石 英衬底上的薄膜在200~1600 nm 范围的透过率并 计算其光学带隙,测试间隔为1 nm,扫描速度为 280 nm/min.

2 结果和讨论

2.1 薄膜的组分和结构

调控沉积时间,使a-C:Cu薄膜的厚度在186~ 221 nm范围变化。S1、S2、S3、S4样品的沉积速率分 别为1.55、1.73、1.84和2.23 nm/min。随着样品靠近 Cu靶,薄膜的沉积速率逐渐提高。图2给出了硅片 上a-C:Cu薄膜截面的形貌。在Cu的含量较低时, Cu的掺入对薄膜的结构没有明显的影响,所有的薄

图1高功率脉冲磁控溅射设备的示意图 Fig.1 Schematic diagram of the HiPIMS deposition equipment

膜均具有良好的致密性。同时,薄膜与Si衬底界面 处也没有出现裂纹或剥落,表明a-C:Cu薄膜与衬底 界面的结合良好。

为了进一步研究Cu掺杂对非晶碳表面形貌的 影响,用AFM表征了表面的形貌和粗糙度。图3给 出了S1~S4样品的3D-AFM图像。可以看出,所有 a-C: Cu薄膜的表面都连续和光滑,从S1到S4的粗 糙度R_a分别为0.28、0.32、0.26、0.24 nm。Cu的掺入 对非晶碳表面的粗糙度没有明显的影响,但是Cu含 量不同的样品其表面形貌不同,S1、S2样品的表面 凸起状结构较多,而S3、S4样品表面呈现更多的颗 粒状结构。

图4给出了S1~S4样品的XPS光谱和拟合结果。 图4a给出了全谱,可见所有a-C:Cu薄膜由C、Cu和 O三种元素组成,其中O元素可能来自沉积过程中 真空腔室中残余的空气^[20,21]。如图4b所示,随着样 品到机架底部的距离从4 cm逐渐增大到16 cm,Cu 含量(原子分数)从 2.77% 提高到 7.28%,表明实现 了对 Cu 含量的调控。图4c 给出了 C 1s 精细谱,为 了得到 sp²-C和 sp³-C的相对含量,用高斯(80%)和 洛伦兹(20%)函数将 C 1s 峰分为三个峰,分别对应 结合能为 284.6、285.4和 286.6 eV 的 sp²-C、sp³-C和 C-O/C=O^[22]。如图4d所示,随着 Cu 含量的提高 sp²-C 的含量随之提高。Cu 含量(原子分数,下同)为 7.28% 的 sp²-C 其含量最高(54%),原因可能是 Cu 元素的引入促进了 sp²-C的形成^[23, 24]。图4e 给出了 Cu 2p 的精细谱,位于 933和 953 eV 附近的峰对应 Cu 2p₃₂和 Cu 2p₁₂,在 933.0和 953.2 eV 之间没有出 现卫星峰,表明 a-C: Cu 薄膜中没有 Cu^{2+[25, 26]}。为了 进一步判断薄膜中 Cu 的存在形式,测试了 Cu 的俄 歇谱(图4f)。位于 568.3 eV 的峰表明, a-C: Cu 薄膜 中的 Cu 主要以单质的形式存在^[27]。

图 5a给出了不同 Cu含量 a-C: Cu薄膜的拉曼光 谱。在波数为 800~2000 cm⁻¹样品 S1~S4 的谱中都出

图 2 Cu 掺杂非晶碳薄膜截面的 SEM 形貌 Fig.2 SEM cross-sectional morphology of a-C:Cu films (a) S1, (b) S2, (c) S3, (d) S4

图 3 Cu 掺杂非晶碳薄膜的三维 AFM 表面形貌 Fig.3 3D-AFM images of a-C: Cu films (a) S1, (b) S2, (c) S3, (d) S4

图4 Cu掺杂量不同的 a-C: Cu 薄膜的 XPS 全谱、各元素的含量、C 1s 精细谱及各杂化碳含量、Cu 2p 的精细谱以及 Cu 的 俄歇谱

Fig.4 XPS spectra (a), the contents of C, O, Cu (b), C 1s spectra (c), sp², sp³, and C-O/C=O contents (d), Cu 2p spectra (e) and Cu LMM Auger spectra (f) of a-C: Cu films with different Cu contents

图 5 Cu 掺杂量不同的 a-C: Cu 薄膜的拉曼光谱及其拟合结果 Fig.5 Raman spectra (a), the fitting result (b) of a-C: Cu films with different Cu contents

现了典型的非晶碳非对称拉曼峰。用高斯拟合将非 晶碳拉曼峰分为位于1360 cm⁻¹附近的D峰和1550 cm⁻¹ 的G峰^[28],其中D峰对应环状结构中 sp²-C原子呼吸 振动,G峰则对应环和链状结构中 sp²-C原子的伸 缩振动。根据G峰的半高宽(G-FWHM)、D峰与G 峰的面积比(*I_p/I_G*)以及G峰位置(G-peak position), 可定性分析 sp²-C团簇的尺寸和含量。如图5b所 示,随着Cu含量从2.7%提高到7.28%,*I_p/I_G*从2.2增 大到2.6,表明Cu的掺入有利于增大sp²-C团簇的尺 寸。G峰位也随着掺入Cu含量提高而增大,Cu含 量为7.28%时G峰位置达到最大值1549.5 cm⁻¹。 G-FWHM先增大后减小,表明Cu含量的提高使 a-C: Cu薄膜结构的无序度先提高后降低。

图 6 给出了无衍射硅衬底上随 Cu 含量变化的 a-C: Cu 薄膜的 XRD 谱。可以看出,在所有样品的 谱中均未出现明显的衍射峰,表明 Cu 含量为 2.77%~7.28%的薄膜其主体仍为非晶态。

为了进一步探究薄膜的微观结构和掺杂Cu的存在形式,对Cu含量为2.77%和7.28%的样品进行

了 TEM 表征。如图 7a 所示, Cu 含量为 2.77%的 薄膜均匀致密,在 HRTEM 图中未出现明显的晶格 条纹,表明非晶碳中的 Cu 以固溶的形式存在。值 得指出的是,在图 7b 对应 SAED 的图中, 衍射环 (*R*=4.43 nm⁻¹) 对应的是 Pt(111) 晶面(*d*=0.229 nm)。 在 Cu 含量为 7.28% 的非晶碳基质中出现了尺寸约为

图7 Cu含量为2.77%和7.28%样品的高分辨电子图像和选区电子衍射图 Fig.7 HRTEM image and corresponding SAED of a-C: Cu film with 2.77% (a, b) and 7.28% Cu (c, d)

5 nm的纳米晶(图7c),其SAED衍射环(R=4.76 nm⁻¹) 对应Cu的(111)晶面(d=0.209 nm)。这表明,随着Cu 含量从2.77%提高到7.28%固溶在非晶碳中的Cu 原子逐渐析出形成纳米晶,并均匀地分散镶嵌在非 晶碳基质中。

图8给出了Cu含量为2.77%和7.28%样品电子 能量的损失谱,可测量出电子在穿过样品过程中因 非弹性碰撞损失的能量,从而确定材料的化学成分 和结构^[29]。EELS可用于分析碳键的形态。位于 285 eV附近的峰对应基态1s轨道的电子跃迁到空 π^{*} 反键轨道产生的能量损失,使用高斯函数拟合为 π^{*} 峰。 σ^{*} 峰对应290至305 eV的小能量范围,为基 态1s轨道的电子跃迁到 σ^{*} 轨道产生的能量损失。 这两个峰的面积比,与 π^{*} 和 σ^{*} 轨道的相对数量成正 比。sp²-C的含量的关系为^[30]

$$\frac{(\pi^*/\sigma^*)_{\text{film}}}{(\pi^*/\sigma^*)_{\text{std}}} = \frac{3x}{4-x}$$
(1)

其中(π^*/σ^*)_{su}为 sp²含量为 100% 的石墨标准样品的 π^* 峰与 σ^* 峰的比值,取 1/3^[29]。x为未知样品的 sp²含量。对 EELS 谱进行分峰 拟合和积分后发现, 2.77%Cu样品的 sp²含量为 37.8%,7.28%Cu样品的 sp²含量为44.4%。这表明,sp²含量随着 Cu含量的提 高而提高。同时,EELS 测得的 sp²含量与 XPS 的结 果相比数值较低,可能是光电子的非弹性散射使 XPS 探测信号衰减所致^[31]。

2.2 电学性能

图 9a 给出了不同 Cu 含量 a-C: Cu 薄膜 300 K 时的 I-V 特性曲线。测试时,用银胶连接 Pt 丝为引出电极以减小接触电阻。所有样品的 I-V 曲线均呈现线性关系,表现出欧姆接触特性。根据图 9a 中 I-V 曲线

图 8 Cu 掺杂量为2.77% 和7.28% 样品的电子能量损失谱

的斜率得到S1~S4电阻率,如图9b所示。可以看出, 随着Cu含量从2.77%提高到7.28%, a-C: Cu薄膜的 电阻率*R*从0.22 Ω·mm单调降低到0.01 Ω·mm。

图10给出了S1~S4样品150~350K的I-V曲线。 在整体上,所有样品在各温度下都表现出优异的线性I-V特性。测试电流一定时每个样品对应的电压 都随着测试温度的升高而降低,表明a-C:Cu薄膜均 具有典型半导体特性。同时,在相同温度下,测试电 流一定时Cu掺杂量小的样品对应的电压值高。例 如S1样品对应的电压值在所有样品中最大,与S1 样品的薄膜电阻率R更大有关。

基于图 10 中的测试数据可得 S1~S4 样品在 150~350 K的 *R-T*曲线,如图 11 所示。可以看出, S1~S4 的电阻率均随着温度的升高而单调下降,表 现出明显的半导体特性。Cu含量为2.77%~7.28% 的样品,其电阻率的温度依赖性变化不大。例如,S1 的电阻率从 150 K的 1.779 Ω·mm 降低至 350 K的 0.147 Ω·mm,降低了 91.7%,而 S4 的电阻率从 150 K 的 0.051 Ω·mm 降低到 350 K 的 0.007 Ω·mm,降低 了 86.3%。

图9Cu掺杂量不同的a-C:Cu薄膜300K时的*I-V*特性曲线和电阻率的变化

Fig.8 EELS spectrum of a-C: Cu film with 2.77% and 7.28% Cu

Fig.9 *I-V* characteristic plots (a) and electrical resistivity (b) at 300 K of the a-C: Cu films with different Cu contents

图 10 Cu掺杂量不同的a-C: Cu薄膜在 150~350 K的*I-V*曲线 Fig.10 *I-V* plots of the a-C: Cu films with different Cu contents from 150 to 350 K

对电阻率 R 和温度 T 的关系进行拟合,可分析 材料中载流子输运的机理。不同于晶体半导体,非 晶半导体中定域态电子只能通过隧穿或者热激活方 式传导^[12]。非晶半导体的电阻率-温度曲线的关 系为^[16]

$$R = R_0 \exp(T_0/T)^n \tag{2}$$

其中R为电阻率,T为测试温度, R_0 和 T_0 皆为常数,n取值1、1/4和1/2,其载流子输运行为分别对应热激 活,Mott型三维变程跳跃传导以及计入Coulomb作 用的变程跳跃传导。

图 12 给出了 S1~S4 样品 150~350 K 的拟合结 果。对于掺入 Cu含量较高的 S3(5.4% Cu,原子分 数)和 S4(7.28% Cu,原子分数)样品,在150~350 K 其 ln(*R*)与*T*^{1/4}线性关系较为显著,对应的载流子传输方 式为 Mott 型三维变程跳跃传导,如图 12e、f 所示。 而 Cu掺杂含量较低的 S1(2.77% Cu,原子分数)和 S2 (3.88% Cu,原子分数)样品,在整个测试温度区间没 有显示出单一的传输机制,在不同温度范围载流子 的输运特性不同。如图 12a、c 所示,在150~250 K 样品 S1、S2 的 ln(*R*)与*T*^{1/4}呈现线性关系;而在 250~350 K,ln(*R*)与*T*^{1/4}呈现线性关系,如图 12b、 d 所示。因此,Cu含量为 2.77% 和 3.88% 样品在 250~350 K其热激活主要为输运机制;而在150~250 K, 起主要作用的是 Mott 型三维变程跳跃传导。

2.3 能带结构

图 13a 给出了不同 Cu 含量 a-C: Cu 薄膜的透过 率曲线。可以看出,S1~S4 样品的透过率随着掺入 Cu 含量的提高而降低,可能与 Cu 及 sp²-C 含量的提 高有关。对于非晶碳等无定型材料,常用 Tauc plot 法通过吸收系数 α 和入射光子能量(*hv*)之间的 关系^[32]

图 12 Cu 掺杂量不同的 a-C: Cu 薄膜在不同温度范围的 $\ln(R)$ 与 $T^{1/4}$ 和 T^{1} 的关系曲线 **Fig.12** Relationship between $\ln(R)$ and $T^{-1/4}$ (a, c, e, f) and T^{-1} (b, d) at different temperature ranges for the samples with

图 13 Cu 掺杂量不同的 a-C: Cu 薄膜的透过率曲线、(αhv)²-hv 曲线以及光学带隙 Fig.13 Transmittance (a), Tauc plots (b) and optical bandgap (c) of a-C: Cu films with different Cu contents

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

计算其

$$(\alpha h\nu) = A(h\nu - E_g)^n$$
(3)
光学带隙。其中 α 为光吸收系数, $h\nu$ 为入射

光子能量,A为常数, E_s 为材料光学带隙,指数 $n(可取 1/2,3/2,2\pi 3)$ 的值与半导体材料以及跃迁类型 相关。绘制($\alpha h\nu$)^{hn}与 $h\nu$ 曲线并将其线性部分延长 至 $\alpha=0$,则对应的入射光子能量即为光学带隙。光 吸收系数 α 可用朗伯比尔定律^[33]

$$\alpha = \frac{1}{d} \left[\ln \left(\frac{1}{T} \right) \right] \tag{4}$$

-4 62 eV

W_c=4.61 eV

计算,其中d为薄膜厚度,单位为nm;T为透过率。

电学测试结果表明,掺入原子分数为2.77%至 7.28% Cu的a-C: Cu薄膜仍具有典型的半导体特性, 因此可将其作为半导体处理。Pandey和Majeed指 出,a-C为直接带隙半导体^[10,32],n取1/2。图13b中 S1~S4样品的(αhν)²-hν曲线,给出了Cu含量对 a-C: Cu薄膜光学带隙的影响。如图13c所示,随着 Cu含量的提高样品S1-S4的光学带隙从3.87 eV下 降到2.93 eV,可能是sp²-C/sp³-C比例与结构的变化

(a)

Intensity / a.u

. S1

S2

\$3

所致^[34,35]。sp³-C只有σ键,sp²-C既有σ键又有π键。 而与σ态相比,π电子更接近费米能级,其带隙主要 由π电子控制^[36]。非晶碳薄膜的光学带隙,可用于 间接评估sp²-C的含量和团簇尺寸。其原因是,E_g随 着sp²-C的含量的提高和团簇尺寸的增大而降低^[23]。

根据能带理论,电子的传输与样品的功函数密 切相关,用UPS可测得S1~S4样品的功函数。 E_{cut} 为 样品二次电子截止边的切线与x坐标轴交点,如图 14a所示,S1~S4样品的 E_{cut} 约为16.61 eV。其对应的 功函数 W_F 可从He I(21.22 eV)中减去 E_{cut} 得到^[37],约 为4.61 eV。Cu的掺入,对 a-C: Cu薄膜的功函数没 有明显的影响。图 14b 给出了S1~S4 样品价带顶 (E_x)相对于费米能级(E_F)的位置。可以看出,随着 Cu含量的提高 E_x 相对 E_F 的距离逐渐从 1.62 eV 降 低到 1.33 eV。以真空能级 0 eV 为参考,结合用紫 外可见近红外透过测试测得的光学带隙,S1~S4 的 能带结构如图 14c 所示。对于本征半导体,其费米能 级位于禁带中间。但是随着掺入Cu含量从 2.77%

Fig.14 Secondary electron cutoff (a), the distance from valence band (E_{u}) to the Fermi level (E_{u}) (b) and band structure (c) of

(b) • S1

• S2

A S3

ntensity / a.u.

1.62 eV

1.55 eV

1.37 eV

提高到7.28%,S1~S4样品的费米能级向价带偏移了 0.29 eV。

3 结论

(1)用 HiPIMS 溅射 Cu-C 拼接靶,可制备 Cu含量为2.77%~7.28%的 a-C: Cu 薄膜。掺杂的 Cu 以单质态存在于非晶碳结构中。随着 Cu含量从2.77%提高到7.28%固溶 Cu 原子析出生成纳米晶, sp²-C含量和团簇尺寸增大。

(2)随着非晶碳中Cu掺杂量的提高a-C:Cu薄膜的导电性增强,薄膜的电学性能仍为典型的半导体特性,在150~350K薄膜的电阻率均随着温度的升高而降低。Cu含量为5.4%和7.28%的样品在150~350K其载流子的传导方式均为Mott型三维变程跳跃传导,而Cu含量为2.77%和3.88%的样品在250~350K为热激活,在150~250K则为Mott型三维变程跳跃传导。

(3) 随着薄膜中Cu掺杂量的提高 a-C: Cu 薄膜的光学带隙减小,费米能级则向价带偏移。

参考文献

- Bhowmick S, Shirzadian S, Alpas A T. High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction [J]. Surf. Coat. Technol., 2022, 431: 127995
- [2] Zarei A, Momeni M. Effective target arrangement for detecting the properties of Ni doped diamond-like carbon by pulsed laser deposition [J]. Fuller. Nanotub. Carbon Nanostruct., 2022, 30: 942
- [3] Khanmohammadi H, Wijanarko W, Cruz S, et al. Triboelectrochemical friction control of W- and Ag-doped DLC coatings in water-glycol with ionic liquids as lubricant additives [J]. RSC Adv., 2022, 12: 3573
- [4] Rusop M, Omer A M M, Adhikari S, et al. Effects of deposition gas pressure on the properties of hydrogenated amorphous carbon nitride films grown by surface wave microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2005, 14: 975
- [5] Kim I S, Shim C E, Kim S W, et al. Amorphous carbon films for electronic applications [J]. Adv. Mater., doi: 10.1002/adma. 202204912
- [6] Tian Q L, Zhao X N, Lin Y, et al. Thermal stable and low current complementary resistive switch with limited Cu source in amorphous carbon [J]. Appl. Phys. Lett., 2022, 121(18): 183502
- [7] Tamulevičius S, Meškinis Š, Tamulevičius T, et al. Diamond like carbon nanocomposites with embedded metallic nanoparticles [J]. Rep. Prog. Phys., 2018, 81(2): 024501
- [8] Li X W, Zhang D, Lee K R, et al. Effect of metal doping on structural characteristics of amorphous carbon system: a first-principles study [J]. Thin Solid Films, 2016, 607: 67
- [9] Yaremchuk I, Meškinis Š, Bulavinets T, et al. Effect of oxidation

of copper nanoparticles on absorption spectra of DLC: Cu nanocomposites [J]. Diam. Relat. Mater., 2019, 99: 107538

- [10] Pandey B, Mukherjee J, Das B, et al. Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films [J]. Eur. Phys. J. Appl. Phys., 2014, 66(1): 10302
- [11] Meškinis Š, Gudaitis R, Šlapikas K, et al. Giant negative piezoresistive effect in diamond-like carbon and diamond-like carbonbased nickel nanocomposite films deposited by reactive magnetron sputtering of Ni target [J]. ACS Appl. Mater. Interfaces, 2018, 10 (18): 15778
- [12] Anderson P W. Absence of diffusion in certain random lattices [J]. Phys. Rev., 1958, 109: 1492
- [13] Tomidokoro M, Tunmee S, Rittihong U, et al. Electrical conduction properties of hydrogenated amorphous carbon films with different structures [J]. Materials, 2021, 14(9): 2355
- [14] Tripathi R K, Panwar O S, Rawal I, et al. Study of variable range hopping conduction mechanism in nanocrystalline carbon thin films deposited by modified anodic jet carbon arc technique: application to light-dependent resistors [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(2): 2535
- [15] Abdolghaderi S, Astinchap B, Shafiekhani A. Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RFsputtering and RF-PECVD in acetylene plasma [J]. J. Mater. Sci.: Mater. Electron., 2016, 27(7): 6713
- [16] Wan C H, Zhang X Z, Vanacken J, et al. Electro- and magnetotransport properties of amorphous carbon films doped with iron [J]. Diam. Relat. Mater., 2011, 20(1): 26
- [17] Li X W, Lee K R, Wang A Y. Chemical bond structure of metal-incorporated carbon system [J]. J. Comput. Theor. Nanosci., 2013, 10 (8): 1688
- [18] Li X W, Wang A Y, Lee K R. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system [J]. Thin Solid Films, 2012, 520(19): 6064
- [19] Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng., 2002, 37R(4-6): 129
- [20] Guo P, Li X W, Sun L L, et al. Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents [J]. Thin Solid Films, 2017, 640: 45
- [21] Kulak A I, Kondratyuk A V, Kulak T I, et al. Electrochemical pulsed deposition of diamond-like films by powerful coulostatic discharge in dimethylsulfoxide solution of lithium acetylide [J]. Chem. Phys. Lett., 2003, 378(1-2): 95
- [22] Gong Y L, Jing P P, Zhou Y J, et al. Formation of rod-shaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films [J]. Diam. Relat. Mater., 2020, 102: 107654
- [23] Zhou B, Liu Z B, Piliptsou D G, et al. Structure and optical properties of Cu-DLC composite films deposited by cathode arc with double-excitation source [J]. Diam. Relat. Mater., 2016, 69: 191
- [24] Ji L, Li H X, Zhao F, et al. Microstructure and mechanical properties of Mo/DLC nanocomposite films [J]. Diam. Relat. Mater.,

2008, 17(11): 1949

- [25] Zhang H W, Tan H R, Jaenicke S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen [J]. J. Catal., 2020, 389: 19
- [26] Liu Y Y, Sun M H, Yuan Y F, et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage [J]. Adv. Funct. Mater., 2020, 30(14): 1910249
- [27] Kim J Y, Hong D, Lee J C, et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO₂ reduction toward C₂₊ products [J]. Nat. Commun., 2021, 12(1): 3765
- [28] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B(20): 14095
- [29] Xie J, Komvopoulos K. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films [J]. J. Appl. Phys., 2016, 119(9): 095304
- [30] Cuomo J J, Doyle J P, Bruley J, et al. Sputter deposition of dense diamond-like carbon-films at low-temperature [J]. Appl. Phys. Lett., 1991, 58(5): 466
- [31] Wang N, Komvopoulos K. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum

arc deposition [J]. J. Mater. Res., 2013, 28(16): 2124

- [32] Majeed S, Siraj K, Naseem S, et al. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering [J]. Mater. Res. Express, 2017, 4(7): 076403
- [33] Pandey B, Hussain S. Effect of nickel incorporation on the optical properties of diamond-like carbon (DLC) matrix [J]. J. Phys. Chem. Solids, 2011, 72(10): 1111
- [34] Hu A, Alkhesho I, Zhou H, et al. Optical and microstructural properties of diamond-like carbon films grown by pulsed laser deposition [J]. Diam. Relat. Mater., 2007, 16(1): 149
- [35] Robertson J. Recombination and photoluminescence mechanism in hydrogenated amorphous carbon [J]. Phys. Rev., 1996, 53B(24): 16302
- [36] Siraj K, Khaleeq-ur-Rahman M, Rafique M S, et al. Pulsed laser deposition and characterization of multilayer metal-carbon thin films [J]. Appl. Surf. Sci., 2011, 257(15): 6445
- [37] Li J F, Li Z Y, Liu X M, et al. Interfacial engineering of Bi₂S₃/ Ti₃C₂T_x MXene based on work function for rapid photo-excited bacteria-killing [J]. Nat. Commun., 2021, 12(1): 1224

(责任编辑:吴岩)